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When does two-grid optimality carry over to the V-cycle?
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SUMMARY

We investigate additional condition(s) that confirm that a V-cycle multigrid method is satisfactory (say,
optimal) when it is based on a two-grid cycle with satisfactory (say, level-independent) convergence
properties. The main tool is McCormick’s bound on the convergence factor (SIAM J. Numer. Anal. 1985;
22:634–643), which we showed in previous work to be the best bound for V-cycle multigrid among those
that are characterized by a constant that is the maximum (or minimum) over all levels of an expression
involving only two consecutive levels; that is, that can be assessed considering only two levels at a time.
We show that, given a satisfactorily converging two-grid method, McCormick’s bound allows us to prove
satisfactory convergence for the V-cycle if and only if the norm of a given projector is bounded at each
level. Moreover, this projector norm is simple to estimate within the framework of Fourier analysis, making
it easy to supplement a standard two-grid analysis with an assessment of the V-cycle potentialities. The
theory is illustrated with a few examples that also show that the provided bounds may give a satisfactory
sharp prediction of the actual multigrid convergence. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider multigrid methods for the solution of symmetric positive-definite (SPD) n×n linear
systems:

Ax=b. (1)
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274 A. NAPOV AND Y. NOTAY

Multigrid methods are based on the recursive use of a two-grid scheme. A basic two-grid method
combines the action of a smoother, often a simple iterative method such as Gauss-Seidel, and a
coarse-grid correction, which corresponds to the solution of the residual equation on a coarser
grid. A V-cycle multigrid method is obtained when the residual equation is solved approximately
with one application of the two-grid scheme on that level, and so on, until the coarsest level, where
an exact solve is performed. Other cycles may be defined, including the W-cycle based on two
recursive applications of the two-grid scheme on each level, see, e.g. [1].

If there are only two levels, accurate bounds may be obtained either by means of Fourier analysis
[1–3], or by using some appropriate algebraic tools [4–8]. This focus on two-grid schemes is
motivated by the fact that, ‘if the two-grid method converges sufficiently well, then the multigrid
method with W-cycle will have similar convergence properties’ [1, p. 77] (see also [9, pp. 226–228]
and [10]). This is not the case for the V-cycle since there are known examples where the two-grid
method converges relatively well, whereas the multigrid method with V-cycle scales poorly with
the number of levels [11]. Hence, V-cycle analysis has to be, at some point, essentially different
from two-grid analysis.

In this paper, we investigate additional condition(s) for obtaining an optimal V-cycle method
from an optimal‡ two-grid method. Note that we do not base our work on a new analysis of
the V-cycle. Several analyses are indeed available, which, however, have a common gap: the
conditions for proving that the V-cycle converges nicely have not been compared with the two-grid
convergence factor, and it is so far unclear how they are related. In fact, a number of results
relate the V-cycle convergence to sufficient conditions for two-grid convergence; see, e.g. the two
conditions (8) in [12], the first of which is sufficient for two-grid. Or, simply, consider V-cycle
analysis particularized to the two-level case. Such sufficient conditions are, however, often stronger
than needed for just two-level convergence, and, as far as we know, no comparison has been made
with necessary and sufficient conditions or with two-grid convergence factor.

To analyze the V-cycle, one possibility consists of defining an appropriate subspace decomposi-
tion and then applying successive subspace correction (SSC) theory [13–18]. Another possibility
consists in checking the so-called smoothing and approximation properties [19–25]. Regarding
the latter approach, the best results for SPD matrices have been obtained by Hackbusch [22,
Theorem 7.2.2] and McCormick [24]. In a previous paper [26], we show that these results are
qualitatively equivalent with McCormick’s bound being always the sharpest. Note that, in both
cases, the bound is characterized by a constant that is the minimum/maximum over all levels of
an expression involving only two consecutive levels. This last property is important in the context
of this study, since it seems at first sight not possible to compare with the two-grid convergence
rate a global expression that would involve simultaneously all levels.

On the other hand, we also consider in [26] the classical formulation of the SSC theory (as stated
in [16, 17]), and discuss how to obtain a bound that could also be assessed considering only two
levels at a time. It turns out that this requires the use of the so-called a-orthogonal decomposition,
which corresponds to the choice most frequently made when applying the SSC theory to multigrid
methods for H2-regular problems. Then, the analysis in [26] shows that this approach is also
qualitatively equivalent to the Hackbusch and McCormick ones, the latter remaining the sharpest.

‡By ‘optimal’, for a two-grid method, we mean ‘having level-independent convergence properties’; that is, referring
to a situation where the two-grid method is defined at different levels of a multigrid hierarchy, it is considered
optimal if there is a level-independent bound on the convergence factor that is uniform with respect to the problem
size.
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Hence, regarding the goal pursued in this work, all exploitable results are superseded by (but
qualitatively equivalent to) McCormick’s bound, which is characterized by the constant �; in this
work, we relate this constant to the two-grid convergence factor. This reveals that a satisfactory
(optimal) two-grid cycle on each level leads to a satisfactory estimate of � if and only if a given
norm of an exact coarse-grid correction (projection) operator remains bounded at each level.
Moreover, it turns out that this norm is easy to assess within the framework of a Fourier analysis.

Eventually, we consider several examples, illustrating the sharpness of the bound based on two-
grid convergence rates and the projector norm. It further turns out that both of these ingredients
are independent and play an important role in the V-cycle convergence behavior.

The reminder of this paper is organized as follows. In Section 2 we state the general setting of
this study and gather the needed assumptions. The relation between the McCormick constant �
and the two-grid convergence factor is established in Section 3. Illustrative examples are discussed
in Section 4.

Notation

Let I denote the identity matrix and O the zero matrix. When the dimensions are not obvious
from the context, we write more specifically Im for the m×m identity matrix.

For any rectangular matrix B, BT stands for its transpose and BH for its transpose complex
conjugate. For any square matrix C , �(C) is its spectral radius (that is, its largest eigenvalue in
modulus), ‖C‖=√�(CTC) is the usual 2-norm and, for an SPD matrix D, ‖C‖D =‖D1/2CD−1/2‖
is the D-norm (if D= A, it is also called energy norm).

2. GENERAL SETTING

We consider a multigrid method with J+1 levels (J�1); index J refers to the finest level (on
which the system (1) is to be solved), and index 0 to the coarsest level. The number of unknowns
at level k, 0�k�J , is noted nk (with thus nJ =n).

Our analysis applies to symmetric multigrid schemes based on the Galerkin principle for the
SPD system (1); that is, restriction is the transpose of prolongation and the matrix Ak at level k,
k= J−1, . . . ,0, is given by Ak = PT

k Ak+1Pk , where Pk is the prolongation operator from level k
to level k+1; we also assume that the smoother Rk is SPD and that the number of pre-smoothing
steps � (�>0) is equal to the number of post-smoothing steps. The algorithm for V-cycle multigrid
is then as follows.

Multigrid with V-cycle at level k : xn+1=MG(b, Ak, xn,k)

(1) Relax � times with smoother Rk : x̄n =Smooth (xn, Ak, Rk,�,b)
(2) Compute residual: rk =b−Ak x̄n
(3) Restrict residual: rk−1= Pk−1

Trk
(4) Corse-grid correction: if k=1, e0= A−1

0 r0 else ek−1=MG (rk−1, Ak−1,0,k−1)

(5) Prolongate coarse-grid correction: ˆ̄xn = x̄n+Pk−1ek−1

(6) Relax � times with smoother Rk : xn+1=Smooth ( ˆ̄xn, Ak, Rk,�,b)

When applying this algorithm, the error satisfies

A−1
k b−xn+1=E (k)

MG(A−1
k b−xn),
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where the iteration matrix E (k)
MG is recursively defined from

E (0)
MG = 0 and for k=1,2, . . . , J :

E (k)
MG = (I −R−1

k Ak)
�(I −Pk−1(I −E (k−1)

MG )A−1
k−1Pk−1

TAk)(I −R−1
k Ak)

�
(2)

(see, e.g. [1, p. 48]). Our main objective is the analysis of the spectral radius of E (J )
MG, which governs

convergence on the finest level. Our analysis makes use of the following general assumptions.
General assumptions

• n=nJ>nJ−1> · · ·>n0;
• Pk is an nk+1×nk matrix of rank nk , k= J−1, . . . ,0;
• AJ = A and Ak = PT

k Ak+1Pk , k= J−1, . . . ,0;
• Rk is SPD and such that �(I −R−1

k Ak)<1, k= J, . . . ,1.

In what follows, we make use of the two-grid cycle involving two consecutive levels k and k−1,
which corresponds to the following iteration matrix:

E (k)
TG =(I −R−1

k Ak)
�(I −Pk−1A

−1
k−1Pk−1

TAk)(I −R−1
k Ak)

�, k=1, . . . , J. (3)

Most of our results do not refer explicitly to the smoother Rk , but are stated with respect to the
matrices M (�)

k defined from

I − M (�)
k

−1
Ak =(I −R−1

k Ak)
�. (4)

That is, M (�)
k is the smoother that provides in one step the same effect as � steps with Rk . The

results stated with respect to M (�)
k may then be seen as the results stated for the case of one

pre-and one post-smoothing step, which can be extended to the general case via the relations (4).
We close this subsection by introducing the projector �Ak , which plays an important role

throughout this paper:

�Ak = Pk−1A
−1
k−1Pk−1

TAk . (5)

Note that I −�Ak is the (exact) coarse-grid correction matrix at level k.

3. THEORETICAL ANALYSIS

3.1. McCormick’s bound

We recall in the following theorem the bound obtained in [24, Lemma 2.3, Theorem 3.4 and
Section 5] (see also [23, 25] for an alternative proof). The equivalence of (8) with the definition (7)
is proved in [26].

Note that the convergence estimates based on regularity assumptions are also considered in
[23]. These estimates are obtained when Theorem 3.1 below is applied to the discretized Partial
differential equations (PDEs). However, Theorem 3.1 on its own is a purely algebraic result that
may by applied to any multigrid method satisfying the general assumptions in Section 2, without
reference to a PDE context. Hence, there is no need for regularity assumptions to apply here, as
may be further confirmed by the purely algebraic proof in [25].
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Theorem 3.1
Let E (J )

MG, M (�)
k , and �Ak , k=1, . . . , J , be defined, respectively, by (2), (4), and (5), with Pk ,

k=0, . . . , J−1, Ak , k=0, . . . , J , and Rk , k=1, . . . , J , satisfying the general assumptions stated
in Section 2.

Then

�(E (J )
MG)�1− �(�) , (6)

where

�(�) = min
1�k�J

min
vk∈Rnk

‖vk‖2Ak
−‖(I − M (�)

k

−1
Ak)vk‖2Ak

‖(I −�Ak )vk‖2Ak

(7)

= min
1�k�J

min
vk∈Rnk

vTk Akvk

vTk (I −�Ak )
TM (2�)

k (I −�Ak )vk
(8)

3.2. Relationship to the two-grid convergence rate

We first recall, in the following lemma, a useful characterization of the two-grid rate obtained in
[6, p. 480].
Lemma 3.1
Let E (k)

TG , M (�)
k , and �Ak , k=1, . . . , J , be defined, respectively, by (3), (4), and (5), with Pk ,

k=0, . . . , J−1, Ak , k=0, . . . , J , and Rk , k=1, . . . , J , satisfying the general assumptions stated
in Section 2.

Then

1−�(E (k)
TG)= min

vk∈Rnk

vTk (I − �̄Ak )A
1/2
k M (2�)

k

−1
A1/2
k (I − �̄Ak )vk

vTk (I − �̄Ak )vk
, (9)

with �̄Ak = A1/2
k �Ak A

−1/2
k .

The next theorem contains our main result.

Theorem 3.2
Let E (k)

TG , M (�)
k , and �Ak , k=1, . . . , J , be defined, respectively, by (3), (4), and (5), with Pk ,

k=0, . . . , J−1, Ak , k=0, . . . , J , and Rk , k=1, . . . , J , satisfying the general assumptions stated
in Section 2. Let �(�) be defined by (7).

Then

�(�) � min
1�k�J

1−�(E (k)
TG)

‖I −�Ak‖2M(2�)
k

= min
1�k�J

1−�(E (k)
TG)

‖�Ak‖2M(2�)
k

. (10)

Moreover,

�(�) � min
1�k�J

min

⎛
⎝1−�(E (k)

TG),
1

‖�Ak‖2M(2�)
k

⎞
⎠ . (11)
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Proof
Let �k be defined by

�k = min
v∈Rk

vTAkv

vT(I −�Ak )
TM (2�)

k (I −�Ak )v
.

From (8), there holds

�(�) = min
1�k�J

�k . (12)

On the other hand, Lemma 3.1 implies (since Ak(I −�Ak )=(I −�Ak )
TAk and (I −�Ak )=

(I −�Ak )
2)

1−�(E (k)
TG) = min

vk∈Rnk

vTk A
1/2
k (I −�Ak )M

(2�)
k

−1
Ak(I −�Ak )A

−1/2
k vk

vTk A
1/2
k (I −�Ak )A

−1/2
k vk

= min
vk∈Rnk

vTk (I −�Ak )M
(2�)
k

−1
Ak(I −�Ak )A

−1
k vk

vTk (I −�Ak )(I −�Ak )A
−1
k vk

= min
vk∈Rnk

vTk (I −�Ak )M
(2�)
k

−1
(I −�Ak )

Tvk

vTk (I −�Ak )A
−1
k (I −�Ak )

Tvk
. (13)

In what follows, we omit the subscripts k, as well as the superscript (k) and (2�) in ETG
and M , respectively, when they are obvious from context. Using (13), one obtains

�−1 = max
v∈Rn

vT(I −�A)TM(I −�A)v

vTAv

= max
v∈Rn

vTA−1/2(I −�A)TM1/2M1/2(I −�A)A−1/2v

vTv

= max
v∈Rn

vTM1/2(I −�A)A−1/2A−1/2(I −�A)TM1/2v

vTv

= max
v∈Rn

vT(I −�A)A−1(I −�A)Tv

vTM−1v
(14)

� max
v∈Rn

vT(I −�A)A−1(I −�A)Tv

vT(I −�A)M−1(I −�A)Tv
max
v∈Rn

vT(I −�A)M−1(I −�A)Tv

vTM−1v

= 1

1−�(ETG)
max
v∈Rn

vTM1/2(I −�A)M−1/2M−1/2(I −�A)TM1/2v

vTv

= 1

1−�(ETG)
max
v∈Rn

vTM−1/2(I −�A)TM1/2M1/2(I −�A)M−1/2v

vTv
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= 1

1−�(ETG)
max
v∈Rn

vT(I −�A)TM(I −�A)v

vTMv

= 1

1−�(ETG)
‖I −�A‖2M .

The result (10) follows directly, using Kato’s lemma (e.g. [27, Lemma 3.6]) which implies
‖I −�A‖M =‖�A‖M , since �A �=O, I by virtue of our general assumptions.

In addition, using (14) together with Lemma 3.1, one also has

� = min
v∈Rn

vTM−1v

vT(I −�A)A−1(I −�A)Tv

� min
v=(I−�A)Tw,w∈Rn

vTM−1v

vT(I −�A)A−1(I −�A)Tv

= 1−�(ETG),

which gives the first term in the right-hand side of (11).
On the other hand, since

vTA1/2M (2�)−1
A1/2v=vTv−vT(I −A1/2M (�)−1

A1/2)2vT�vTv, ∀v∈Rn,

there holds

vTAv�vTMv, ∀v∈Rn.

Hence,

� = min
v∈Rn

vTAv

vT(I −�A)TM(I −�A)v

�min
v∈R

vTMv

vT(I −�A)TM(I −�A)v

= 1

‖I −�A‖2M
, (15)

which, combined with Kato’s lemma ‖I −�A‖M =‖�A‖M , gives the second term in the right-hand
side of (11). �

Theorem 3.2 shows that McCormick’s bound proves a satisfactory convergence rate for the
V-cycle if and only if, at each level, the two-grid method converges fast enough and ‖�Ak‖M(2�)

k
=

‖M (2�)
k

1/2
�Ak M

(2�)
k

−1/2‖ is nicely bounded. We can further show the following corollary.

Corollary 3.1
Let the assumptions of Theorem 3.2 hold and let E (J )

MG be defined by (2).
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Then

�(E (J )
TG )��(E (J )

MG)�1− �(�) �1− min
1�k�J

1−�(E (k)
TG)

‖�Ak‖2M(2�)
k

. (16)

Proof
The proof of �(E (k)

TG)��(E (k)
MG) can be deduced from the relation (7.2.2a) in [22] combined with

(7.2.4a) from the same reference, which proves that

A1/2E (k)
MGA

−1/2�A1/2E (k)
TG A−1/2.

The other results follow from Theorems 3.1 and 3.2. �

Note that the V-cycle convergence factor is bounded below by the two-grid convergence factor
on the finest grid only. Indeed, max1�k�J �(E (k)

TG) can be close to 1 even when �(E (J )
MG) is not, for

instance, when the smoother alone is efficient enough on the finest level, so that poor two-grid
ingredients on coarser levels will not significantly affect the convergence. In practice, however,
one has often max1�k�J �(E (k)

TG)≈�(E (J )
TG ) (e.g. consider the discrete Poisson equation on many

simple geometries with uniform meshes). Then (16) defines an interval, containing both 1− �(�)

and �(E (J )
MG), that is narrow if and only if max1�k�J ‖�Ak‖M(2�)

k
is not much larger than 1.

3.3. Fourier analysis

Often, a multigrid method is assessed by estimating the two-grid convergence rate with Fourier
analysis [1–3]. This means that one considers a model constant-coefficient PDE for which the
eigenvectors of the discrete matrix are explicitly known at all levels. Simple smoothers have the
same set of eigenvectors and, hence, the matrices Ak and Rk are both diagonal whenever expressed
in the corresponding basis (the Fourier basis). In more complicated situations, Rk may be only
block-diagonal with small diagonal blocks; Ak may also have a block diagonal structure in case
of coupled systems of PDEs. Note that M (2�)

k , expressed in the Fourier basis, will then have the
same block diagonal structure as Ak and Rk , and will be pointwise diagonal if Ak and Rk are
pointwise diagonal.

Let

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎝

�(k)
1

�(k)
2

. . .

�(k)
lk

⎞
⎟⎟⎟⎟⎟⎟⎠

, M (2�)
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

�(k)
1

�(k)
2

. . .

�(k)
lk

⎞
⎟⎟⎟⎟⎟⎟⎠

be this (block) diagonal representation of Ak and M (2�)
k , where the i th block has size m(k)

i ×m(k)
i ,

i=1, . . . , lk . Technically, the Fourier analysis of a two-grid method at level k characterized by a
given prolongation Pk−1 is possible if there exists a basis of the coarse space (the coarse Fourier
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basis) such that the expression of Pk−1 in both this basis and the (fine grid) Fourier basis has the
structure

Pk−1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p(k−1)
1

p(k−1)
2

. . .

p(k−1)
lk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where p(k−1)
i are (possibly complex) rectangular matrices of size m(k)

i ×m(k−1)
i .

Here, we observe that, in this context, M (2�)1/2

k �Ak M
(2�)−1/2

k is also block diagonal with diagonal
blocks of the form

�(k)1/2

i p(k−1)
i

(
p(k−1)H

i �(k)
i p(k−1)

i

)−1
p(k−1)H

i �(k)
i �(k)−1/2

i . (17)

Hence, ‖�Ak‖2M(2�)
k

is the maximal norm of all these m(k)
i ×m(k)

i blocks. Further, the matrices (17)

are the product of rectangular matrices; taking the product of their norms gives an easy-to-assess
upper bound:

‖�Ak‖M(2�)
k

�max
i

‖�(k)1/2

i p(k−1)
i ‖‖(p(k−1)H

i �(k)
i p(k−1)

i )−1 p(k−1)H

i �(k)
i �(k)−1/2

i ‖. (18)

It is worth noting that the latter inequality becomes an equality when m(k−1)
i =1 for all i ; that is,

when the rectangular blocks p(k−1)
i are all simple vectors, as most often arises when analyzing

scalar PDEs.

3.4. Finite element setting

Consider a finite element discretization of the Poisson boundary value problem on a bounded
domain. Such a domain is first approximated by an appropriate polygonal or polyhedral mesh,
which is then refined several times. These refinements naturally induce a multigrid hierarchy
(including inter-grid transfer operators Pk). It then can be shown (see [28, Theorem 4.2]) that
‖�Ak‖ are bounded on all levels if and only if the underlying problem possesses (full) elliptic
regularity. Since ‖·‖ behaves similar to ‖·‖

M(2�)
k

for a number of smoothers, essentially the same

conclusions hold with respect to ‖�Ak‖M(2�)
k

.

With regards to Theorem 3.2, these observations show that level-independent two-grid conver-
gence implies, in this context, a level-independent bound for V-cycle multigrid if and only if the
problem has full elliptic regularity. Hence, it follows that McCormick’s analysis cannot prove
optimal bounds for the V-cycle if the problem does not possess full regularity. Considering the
results in [26], the same conclusions hold for Hackbusch’s analysis [22, Section 7.2], and the SSC
theory with a-orthogonal decomposition [16, 17]. Thus, for the case when ‖�Ak‖ and ‖�Ak‖M(2�)

k
behave similarly with respect to the problem size, we show here that another type of analysis, as
developed in, e.g. [13–18], is really needed to get uniform results for the V-cycle for problems
with less than full regularity.
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4. EXAMPLES

We consider three examples that represent three possible different practical situations. In the first,
both �(E (k)

TG) and ‖�A‖2
M(2) are nicely bounded above. In the second example, �(E (k)

TG) remains

bounded away from one, whereas ‖�A‖2
M(2) increases rapidly with the problem size. The third

example is the other way around: ‖�A‖2
M(2) is nicely bounded, whereas �(E (k)

TG) is far from being
optimal.

4.1. Standard multigrid with 2D Poisson

We consider the linear system resulting from the bilinear finite element discretization of the
two-dimensional Poisson problem

−�u = f in �=(0,1)×(0,1)

u = 0 in ��

on a uniform grid of mesh size h=1/NJ in both the directions. The matrix corresponds then to
the following nine point stencil: ⎡

⎢⎣
−1 −1 −1

−1 8 −1

−1 −1 −1

⎤
⎥⎦ . (19)

Up to some scaling factor, this is also the stencil obtained with nine-point finite difference discretiza-
tion. We assume NJ =2J N0 for some integer N0, allowing J steps of regular geometric coarsening.
We consider the standard prolongation operator

Pk =
(
Jk

Ink

)
,

where Jk corresponds to the natural interpolation associated with bilinear finite element basis
functions. The restriction PT

k corresponds then to ‘full weighting’, as defined in, e.g. [1].§ We
consider damped Jacobi smoothing: Rk =�−1

Jacdiag(Ak). Since the stencil is preserved on all levels,
it is sufficient to consider only two successive grids; to alleviate notation, we therefore let N =Nk ,
A= Ak , R= Rk , M=M (�)

k , P= Pk−1, Ac= Ak−1= PTAP , and �A=�Ak = PA−1
c PTA.

We now use the Fourier analysis to asses ‖�A‖M(2�) via (18). The eigenvectors of A are, for
i, j =1, . . . ,N−1, the functions

u(N )
i, j =sin(i�x)sin(j�y)

evaluated at the grid points. The eigenvalue corresponding to u(N )
i, j is

�(N )
i, j =4(3si +3s j −4si s j ), (20)

§Up to some scaling factor, the scalings of the prolongation and restriction are unimportant when using coarse-grid
matrices of the Galerkin type.
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where

si =sin2
(

i�

2N

)
, s j =sin2

(
j�

2N

)
. (21)

Hence, the eigenvalues of I −R−1A are in the interval [1−�Jac
3
2 ,1). One has therefore

�(I −R−1A)�1, as required by our general assumptions if �Jac∈(0, 4
3 ). The prolongation P

satisfies (see, e.g. [1, p. 87])

PT

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(N )
i, j

u(N )
N−i,N− j

−u(N )
N−i, j

−u(N )
i,N− j

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1−si )(1−s j )

si s j

si (1−s j )

(1−si )s j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
u(N/2)
i, j

for 1�i, j�N/2−1, with PTu(N )
i, j =0 for i=N/2 or j =N/2. Using

pi, j = 4((1−si )(1−s j ) si s j si (1−s j ) (1−si )s j )
T,

�i, j = diag(�(N )
i, j ,�(N )

N−i,N− j ,�
(N )
N−i, j ,�

(N )
i,N− j ),

�(�)
i, j = diag

⎛
⎜⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩	(�)(�(N )

c,s )

∣∣∣∣∣∣∣∣
	(�)(�)= �

1−
(
1− �Jac�

8

)�

⎫⎪⎪⎬
⎪⎪⎭

(c,s)=(i, j),(N−i,N− j),(N−i, j),(i,N− j)

⎞
⎟⎟⎟⎠ ,

we can rewrite (18):

‖�A‖2M(2�) = max
i, j=1,...,N−1

g(�)(si ,s j ),

where

g(�)(si ,s j )=
‖�(2�)1/2

i, j pi, j‖2‖pTi, j�i, j�
(2�)−1/2

i, j ‖2
(pTi, j�i, j pi, j )2

. (22)

One also has

max
i, j=1,...,N−1

g(�)(si ,s j )� sup
(si ,s j )∈(0,1)×(0,1)

g(�)(si ,s j ).

For all �, g(�)(si ,sm) exhibits the following symmetries: g(�)(si ,s j )=g(�)(1−si ,s j )=g(�)

(si ,1−s j )=g(�)(1−si ,1−s j ). Further, numerical investigations reveal that the maximum on the
considered domain is located at the boundary, i.e. corresponds to, e.g. s j =0 or, equivalently, j=0
(such index values represent asymptotic behavior and do not correspond to any Fourier block).
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Because of the symmetries, it is sufficient to analyze this latter case. Next, since

g(�)(si ,0)

=

(
(pi,0)21	

(2�)(�(N )
i,0 )+(pi,0)23	

(2�)(�(N )
N−i,0)

)( (pi,0)21(�
(N )
i,0 )2

	(2�)(�(N )
i,0 )

+ (pi,0)23(�
(N )
N−i,0)

2

	(2�)(�(N )
N−i,0)

)

((pi,0)21�
(N )
i,0 +(pi,0)23�

(N )
N−i,0)

2

= 1+
(pi,0)21(pi,0)

2
3

(
	(2�)(�(N )

i,0 )

	(2�)(�(N )
N−i,0)

(�(N )
N−i,0)

2+ 	(2�)(�(N )
N−i,0)

	(2�)(�(N )
i,0 )

(�(N )
i,0 )2−2�(N )

i,0 �(N )
N−i,0

)

((pi,0)21�i,0+(pi,0)23�N−i,0)2

= 1+si (1−si )

⎛
⎜⎜⎜⎝

1−
(
1− 3

2
�Jacsi

)2�

1−
(
1− 3

2
�Jac(1−si )

)2� +
1−
(
1− 3

2
�Jac(1−si )

)2�

1−
(
1− 3

2
�Jacsi

)2� −2

⎞
⎟⎟⎟⎠ , (23)

we obtain (see Appendix A for details)

‖�A‖2M(2�)� sup
(si ,s j )∈(0,1)×(0,1)

g(�)(si ,s j )= sup
si∈(0,1)

g(�)(si ,0)�

⎧⎪⎪⎨
⎪⎪⎩
2− 3�Jac

4
if �=1

1+ 1

3��Jac
if �>1

Note that this bound is asymptotically sharp for N →∞ when �=1, since lims→0 g(1)(s,0)=
2−3�Jac/4. In Tables I and II, we use this bound and the asymptotically sharp estimate

�(�) −1� 1

3��Jac
+ 1

1−
(
1− 3�Jac

2

)2� , ∀�=1,2,

obtained in [26] to illustrate inequalities (16), with two-grid and V-cycle multigrid convergence
factors numerically assessed for N0=2 and J =7 (hence N =256). Note that �(E (k)

TG) increases

with the mesh size, so that max1�k�J �(E (k)
TG) corresponds to the value on the finest grid, which

is close to the asymptotic one. Observe that the interval containing both �(E (J )
MG) and 1− �(1) is

sharp enough. On the other hand, 1−1/‖�A‖2
M(2) is also a lower bound on 1− �(1) by (11), but

in general not a lower bound on the effective convergence factor.
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Table I. The estimates of main convergence parameters for �=1 and for different damping factors �Jac.

�Jac 1− 1
‖�A‖2

M(2)
�(E(J )

TG ) �(E(J )
MG) 1− �(1) 1− (1−�(E (J )

TG ))

‖�A‖2
M(2)

1
2 0.385 0.391 0.398 0.423 0.625

2
3 0.333 0.25 0.271 0.333 0.5

1 0.2 0.25 0.251 0.4 0.4

Table II. The estimates of main convergence parameters for �=2 and for different damping factors �Jac.

�Jac 1− 1
‖�A‖2

M(4)
�(E(J )

TG ) �(E(J )
MG) 1− �(2) 1− (1−�(E (J )

TG ))

‖�A‖2
M(4)

1
2 0.25 0.153 0.187 0.252 0.365

2
3 0.2 0.083 0.121 0.2 0.266

1 0.143 0.068 0.091 0.189 0.2

4.2. Aggregation-based multigrid for 1D Poisson

We consider N×N linear system associated with A= A(
), where

A(
)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 · · · −1

−1 2 −1

−1 2
. . .

...

...
. . .

. . . −1

−1 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
N−1 IN , (24)

with N =2J N0 and 
>0. We also assume piecewise constant prolongation of the form

P=

⎛
⎜⎜⎜⎜⎜⎝

1 1

1 1

. . .

1 1

⎞
⎟⎟⎟⎟⎟⎠

T

.

Note that, with this prolongation, the successive coarse-grid matrices Ak = Ak(
) are also given by
(24) with N replaced by Nk =2k N0, where we consider N0�2. Hence, we can omit the subscript
k (or k−1), let Ac= Ak−1= PTAP , and set �A=�Ak = PA−1

c PTA.
Note that this is a 1D-like problem that could be solved more efficiently using a tri-diagonal

solver. The analysis below can however be easily repeated in more dimensions, leading essentially
to the same conclusions. We therefore continue with the 1D variant for the sake of simplicity.
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The eigenvectors of A(
) are, for j =0, . . . ,N−1, the functions

u(N )
j = 1√

N
exp(i j�x)

evaluated at the grid points, with i=√−1. The eigenvalue corresponding to u(N )
j is

�(N )
j (
)=4sin2(j�N−1)+
N−1.

The prolongation P satisfies (see [11, p. 1087])

PT

⎧⎨
⎩
u(N )
j

u(N )
j+N/2

⎫⎬
⎭=√

2ei j�N
−1

{
cos(j�N−1)

i sin(j�N−1)

}
u(N/2)
j .

We consider damped Jacobi smoother R=2 diag(A). Hence, the eigenvalues of I −R−1A are
in the interval[

1− 
N−1

4+2
N−1
,1− 4+
N−1

4+2
N−1

)
=[�,1−�) with �= 4+
N−1

4+2
N−1
∈(0,1).

One therefore has �(I −R−1A)�1, as required by our general assumptions.
Letting

p j = √
2ei j�N

−1
(cos(j�N−1)i sin(j�N−1))H ,

� j (
) = diag(�(N )
j (
),�(N )

j+N/2(
)),

�(�)
j (
) = diag

⎛
⎜⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩	(�)(�(N )

c (
))

∣∣∣∣∣∣∣∣
	(�)(�)= �

1−
(
1− ��

4+
N−1

)�

⎫⎪⎪⎬
⎪⎪⎭

(c)=( j),( j+N/2)

⎞
⎟⎟⎟⎠ ,

we can rewrite (18) as:

‖�A‖M(2�) = max
j=0,...,N/2−1

‖�(2�)
j (
)

1/2
p j‖‖pHj � j (
)�

(2�)
j (
)

−1/2‖
pHj � j (
)p j

. (25)

First observe that 	(2�)(�) is an increasing function of � since t (1−(1− t)2�)−1 is an increasing
function of t on the interval (0,1). Hence, since �(N )

1 (
)��(N )
1+N/2(
) for N�2N0�4, we have

‖�A‖M(2�) � ‖�(2�)
1 (
)

1/2
p1‖‖pH1 �1(
)�

(2�)
1 (
)

−1/2‖
pH1 �1(
)p1

=

√√√√|(p1)1|2 	(2�)(�(N )
1 (
))

	(2�)(�(N )
1+N/2(
))

+|(p1)2|2
√√√√|(p1)1|2�(N )

1 (
)
2 	(2�)(�(N )

1+N/2(
))

	(2�)(�(N )
1 (
))

+|(p1)2|2�(N )
1+N/2(
)

2

|(p1)1|2�(N )
1 (
)+|(p1)2|2�(N )

1+N/2(
)
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�
√√√√ 	(2�)(�(N )

1 (
))

	(2�)(�(N )
1+N/2(
))

√|(p1)1|2+|(p1)2|2
√

|(p1)1|2�(N )
1 (
)

2+|(p1)2|2�(N )
1+N/2(
)

2

|(p1)1|2�(N )
1 (
)+|(p1)2|2�(N )

1+N/2(
)

=
√√√√ 	(2�)(�(N )

1 (
))

	(2�)(�(N )
1+N/2(
))

√
cos4(j�N−1)sin2(j�N−1)+cos2(j�N−1)sin4(j�N−1)+O(
)

2cos2(j�N−1)sin2(j�N−1)+O(
)
.

Further, using again the monotonicity of 	(2�), there holds

	(2�)(�(N )
1 (
))

	(2�)(�(N )
1+N/2(
))

� lim�→0	(2�)(�)

	(2�)(4+
N−1)
= (4+
N−1)

��

1−(1−�)2�

(4+
N−1)
= 1−(1−�)2�

��

with �∈(0,1). Hence, for 
→0, we have

‖�A‖2M(2�)�
1−(1−�)2�

��

1

4cos2(j�N−1)sin2(j�N−1)
=O(N 2).

Thus, ‖�A‖2
M(2)

k

increases with the problem size when 
 is small enough, whereas, as shown in

[11], the two-grid convergence factor remains bounded. Hence, we have an example of optimal
two-grid method for which the V-cycle convergence estimate is poor. As seen in Table III, it turns
out that the actual convergence factor also deteriorates with the number of levels, showing that the
analysis based on ‖�A‖2

M(2) is qualitatively correct.

4.3. Positive off-diagonal entries

We consider the (2NJ −1)×(2NJ −1) matrix

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1

1 2 1

. . .
. . .

. . .

1 2 1

1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Table III. The values of main parameters for 
=10−4 and for different problem sizes; the
coarsest grid corresponds to N0=4.

J (N ) 1(8) 3(32) 5(128) 7(512) 9(2048)

‖�A‖2
M(2)

J

1.471 13.58 208.0 3312 52 575

�(E(J )
TG ) 0.375 0.490 0.499 0.5 0.5

�(E(J )
MG) 0.375 0.800 0.947 0.986 0.997
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Table IV. The values of main parameters for different problem sizes; the
coarsest grid corresponds to N0=2.

J (N ) 1(4) 3(16) 5(64) 7(256) 9(1024)

‖�A‖2
M(2)

J

1.235 1.479 1.498 1.5 1.5

�(E(J )
TG ) 0.625 0.971 0.998 0.9999 0.99999

�(E(J )
MG) 0.625 0.971 0.998 0.9999 0.99999

with Nk =N0 ·2k , corresponding to the one-dimensional stencil

[1 2 1]. (26)

We also consider the (2Nk−1)×(Nk−1) prolongation matrix

Pk = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

1 0 1

1 0 1

. . .

1 0 1

⎞
⎟⎟⎟⎟⎟⎠

T

(27)

and the damped Jacobi smoother Rk = 1
2diag(Ak) with one pre-smoothing step and one post-

smoothing step at each level. Note that the stencil (26) is preserved on all levels.
The values of ‖�A‖2

M(2)
J

and �(E (J )
TG ) on the finest grid, which are also the maximal values of

these parameters over all grids, are given in Table IV together with the V-cycle convergence factor
�(E (J )

MG).

This example illustrates that ‖�Ak‖2M(2�)
k

is a parameter essentially independent of �(E (k)
TG), since

it remains nicely bounded while both the two-grid and the V-cycle convergence factor deteriorate
rapidly with the problem size.

APPENDIX A

In this appendix, we outline the proof of the following inequality:

sup
si∈(0,1)

g(�)(si ,0)�

⎧⎪⎪⎨
⎪⎪⎩

2− 3�Jac

4
if �=1

1+ 1

3��Jac
if �>1,

(A1)

with g(�) defined by (23) and �Jac∈[0, 4
3 ).
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Note that g(�)(si ,0)=g(�)(1−si ,0) and it is sufficient to seek a supremum for si ∈(0,0.5). Next,
exchanging ( 32 )�Jac for � (hence, �∈[0,2)), one has

g(�)(si ,0) = 1+si (1−si )

([
1−(1−�si )2�

1−(1−�(1−si ))2�
−1

]
+
[
1−(1−�(1−si ))2�

1−(1−�si )2�
−1

])

= 1+si (1−si )[(1−�si )
2�−(1−�(1−si ))

2�]

×
(

1

1−(1−�si )2�
− 1

1−(1−�(1−si ))2�

)

� 1+si (1−si )[(1−�si )
2�−(1−�(1−si ))

2�]
(

1

1−(1−�si )2�

)

� 1+si (1−�si )
2�
(

1

1−(1−�si )2�

)

= 1+ (1−�si )2�

�
∑2�−1

k=0 (1−�si )k

� 1+ 1

2��
, (A2)

the last inequality coming from the fact that �si ∈[0,1). This proves (A1) for �>1.
On the other hand, if �=1, (A2) further gives

g(1)(si ,0) � 1+si (1−si )[(1−�si )
2−(1−�(1−si ))

2]
(

1

1−(1−�si )2

)

= 1+si (1−si )[�(2−�)(1−2si )]
(

1

�si (2−�si )

)

= 1+(2−�)(1−2si )

(
1

�
− 2−�

�(2−�si )

)
(A3)

� 1+(2−�)

(
1

�
− 2−�

2�

)
(A4)

= 2− �

2
,

where the inequality (A4) comes from the fact that the expression (A3) is a decreasing function
of si . This concludes the proof.

ACKNOWLEDGEMENTS

We thank an anonymous referee for the enlightened comments that form the basis of Section 3.4.

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:273–290
DOI: 10.1002/nla



290 A. NAPOV AND Y. NOTAY

REFERENCES

1. Trottenberg U, Oosterlee CW, Schüller A. Multigrid. Academic Press: London, 2001.
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